Check MAS Template if you want to execute the MAS.
Every morning Aya goes for a $9$-kilometer-long walk and stops at a coffee shop afterwards. When she walks at a constant speed of $s$ kilometers per hour, the walk takes her 4 hours, including $t$ minutes spent in the coffee shop. When she walks $s+2$ kilometers per hour, the walk takes her 2 hours and 24 minutes, including $t$ minutes spent in the coffee shop. Suppose Aya walks at $s+\frac{1}{2}$ kilometers per hour. Find the number of minutes the walk takes her, including the $t$ minutes spent in the coffee shop.
def forward(self, taskInfo):
from collections import Counter
sub_tasks = []
agents = []
cot_instruction_1 = "Sub-task 1: Calculate the time taken to walk 9 km at s km/h without considering the coffee shop time."
cot_agent = LLMAgentBase(['thinking', 'answer'], 'Chain-of-Thought Agent', model=global_node_model, temperature=0.0)
thinking1, answer1 = cot_agent([taskInfo], cot_instruction_1, is_sub_task=True)
agents.append(f"CoT agent {cot_agent.id}, calculating time at s km/h, thinking: {thinking1.content}; answer: {answer1.content}")
sub_tasks.append(f"Sub-task 1 output: thinking - {thinking1.content}; answer - {answer1.content}")
cot_instruction_2 = "Sub-task 2: Calculate the time taken to walk 9 km at s+2 km/h without considering the coffee shop time."
thinking2, answer2 = cot_agent([taskInfo], cot_instruction_2, is_sub_task=True)
agents.append(f"CoT agent {cot_agent.id}, calculating time at s+2 km/h, thinking: {thinking2.content}; answer: {answer2.content}")
sub_tasks.append(f"Sub-task 2 output: thinking - {thinking2.content}; answer - {answer2.content}")
cot_reflect_instruction_3 = "Sub-task 3: Use the results from Sub-task 1 and Sub-task 2 to calculate s and t."
thinking3, answer3 = cot_agent([taskInfo, thinking1, answer1, thinking2, answer2], cot_reflect_instruction_3, is_sub_task=True)
agents.append(f"Reflexion CoT agent {cot_agent.id}, calculating s and t, thinking: {thinking3.content}; answer: {answer3.content}")
sub_tasks.append(f"Sub-task 3 output: thinking - {thinking3.content}; answer - {answer3.content}")
cot_reflect_instruction_4 = "Sub-task 4: Based on the outputs from Sub-task 3, calculate the time it takes for Aya to walk 9 km at s+1/2 km/h, including the t minutes spent in the coffee shop."
thinking4, answer4 = cot_agent([taskInfo, thinking3, answer3], cot_reflect_instruction_4, is_sub_task=True)
agents.append(f"Reflexion CoT agent {cot_agent.id}, calculating final time, thinking: {thinking4.content}; answer: {answer4.content}")
sub_tasks.append(f"Sub-task 4 output: thinking - {thinking4.content}; answer - {answer4.content}")
final_answer = self.make_final_answer(thinking4, answer4, sub_tasks, agents)
return final_answer
<place_holder_problem>
<place_holder_code>
<place_holder_problem>
<place_holder_code>
<place_holder_problem>
<place_holder_code>
<place_holder_problem>
<place_holder_code>
<place_holder_problem>
<place_holder_code>
<place_holder_problem>
<place_holder_code>